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Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4) 
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Applications:
● Auto-complete: What word is next? 
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given 

error?
● Speech Recognition: What did they just say?

“eyes aw of an” 
(example from Jurafsky, 2017; ..did you say "giraffe ski 2,017"? )
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state-of-the-art 
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Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

BERT

ELMO

GPT
XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The 
Measurement 
of Meaning

Deerwater: 
Indexing by Latent 
Semantic Analysis 
(LSA)

Brown et al.: Class-based ngram models of 
      natural language 

Switzer: Vector 
Space Models

Bengio: 
Neural-net
based 
embeddings

Mikolov: word2vec

Collobert and 
Weston: A unified 
architecture for 
natural language 
processing: Deep 
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 
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Solution: Estimate from shorter sequences, use more 
sophisticated probability theory.  

Problem: even the Web isn’t large enough to enable 
good estimates of most phrases. 
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What about Logistic Regression?  Y = next word
P(Y|X)   =  P(Xn | Xn-1, Xn-2, Xn-3, ...)

Not a terrible option, but Xn-1 through Xn-k 
would be modeled as independent dimensions. 
Let’s revisit later.



Unigram Model: k = 0; 
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Bigram Model: k = 1; 

Problem: even the Web isn’t large enough to enable 
good estimates of most phrases. 

Example from (Jurafsky, 2017)

Markov Assumption:

P(Xn| X1…, Xn-1)  ≈ P(Xn| Xn-k, …, Xn-1)    where k < n

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

P(X1 = “outside”, X2=”new”, X3 = “car”, ....) 
   ≈ P(X1=“outside”) * P(X2=”new”|X1 = “outside) * P(X3=”car” | X2=”new”) * ...
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when is caffe venezia open during the day
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Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Language 
Model
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Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model: 

Need to estimate:  P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

Trigram model: 

Need to estimate:  P(Xi | Xi-1, Xi-2) = count(Xi-2 Xi-1 Xi) / count(Xi-2 Xi-1) 
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Evaluation

a sequence of 
natural language 

Trained
Language 

Model

What is the next word 
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, 
PP for Bigrams: 

Reasoning: 
1) Inverse of probability 

(i.e. minimize perplexity = maximize likelihood)
2) (weighted) average branching factor



● Use log probability to keep numbers reasonable and save computation.
(uses addition rather than multiplication)

● Out-of-vocabulary (OOV)
Choose minimum frequency and mark as <OOV> 

● Sentence start and end: <s> this is a sentence </s>
Advantage: models word probability at beginning or end. 

● Alternative to backoff: Interpolation

Practical Considerations:



Zeros and Smoothing
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Unsmoothed probs

first word(Xi-1) \ 
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)



Smoothed

first word(Xi-1) \ 
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

(vocabulary size)



Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)



Why Smoothing? Generalizes

Add-one is blunt: 
can lead to very large changes. 

More Advanced: 

Good-Turing Smoothing
Kneser-Nay Smoothing

These are outside scope for now. 
We will eventually cover, even stronger, 
deep learning based models. 
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What about Logistic Regression?  Y = next word
P(Y|X)   =  P(Xn | Xn-1, Xn-2, Xn-3, ...)

Not a terrible option, but Xn-1 through Xn-k 
would be modeled as independent dimensions. 
Let’s revisit later. 



Why Smoothing? Generalizes

What about Logistic Regression?  Y = next word
P(Y|X)   =  P(Xn | Xn-1, Xn-2, Xn-3, ...)

Not a terrible option, but Xn-1 through Xn-k 
would be modeled as independent dimensions. 
Let’s revisit later. Could use:
P(Xn | Xn-1, [Xn-1 Xn-2], [Xn-1 Xn-2 Xn-3], ...)



Example how to produce language generator

1. Count unigrams, bigrams, and trigrams

2. Train probabilities for unigram, bigram, and trigram models (over 

training)

a. with smoothing

b. without smoothing

3. Generate language: Given previous word or previous 2 words, take 

a random draw from what words are most likely to be next. 

Trigram model when good evidence (high counts)

Backing off to bigram or even unigram



Limitation: Long distance dependencies

The horse which was raced past the barn tripped . 



Language Modeling Summary

● Two versions of assigning probability to sequence of words

● Applications

● The Chain Rule, The Markov Assumption:

● Training a unigram, bigram, trigram model based on counts

● Evaluation: Perplexity

● Zeros, Low Counts,  and Generalizability

● Add-one smoothing 


