Language Modeling

CSE354 - Spring 2021

Task

- Language Modeling (i.e. auto-complete)

- Probabilistic Modeling
- Probability Theory
- Logistic Regression
- Sequence Modeling

Task

- Language Modeling (i.e. auto-complete)

- Probabilistic Modeling
- Probability Theory
- Logistic Regression
- Sequence Modeling
- Eventually: Deep Learning
- Recurrent Neural Nets
- Transformer Networks

Language Modeling

-- assigning a probability to sequences of words.
Version 1: Compute $P(w 1, w 2, w 3, w 4, w 5)=P(W)$
:probability of a sequence of words

Language Modeling

-- assigning a probability to sequences of words.
Version 1: Compute $P(w 1, w 2, w 3, w 4, w 5)=P(W)$:probability of a sequence of words

Version 2: Compute $P\left(w 5 \mid w 1, w 2, w 3, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history

Language Modeling

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$:probability of a sequence of words $P($ He ate the cake with the fork $)=$?

Version 2: Compute $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$?

Language Modeling

Applications:

- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say? "eyes aw of an"
(example from Jurafsky, 2017; ..did you say "giraffe ski 2,017"?)

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

- Language Models
- Vector Semantics
- LMs + Vectors

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
$\because \quad 1948$

- Language Models
- Vector Semantics
- LMs + Vectors
~logarithmic scale

```
These (or similar) are behind almost all state-of-the-art modern NLP systems
```


Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

Osgood: The Measurement of Meaning Shannon: A Mathematical Theory of Communication (first digital language model) Jelinek et al. (IBM): Language Models for Speech Recognition

Switzer: Vector Space Models

Deerwater: Indexing by Latent Semantic Analysis

- Language Models
- Vector Semantics
- LMs + Vectors
~logarithmic scale
(LSA)

Bengio:
Neural-net based embeddings

$$
0 .
$$

Brown et al.: Class-based ngram models of 2003 natural language

Blei et al.: [LDA Topic Modeling] 2010

Mikolov: word2vec ELMO 2018 Collobert and Weston: A unified architecture for natural language processing: Deep neural networks...

XLNet RoBERTA
BERT

GPT3

Language Modeling

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$:probability of a sequence of words $P($ He ate the cake with the fork $)=$?

Version 2: Compute $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$?

Simple Solution

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$:probability of a sequence of words
$P($ He ate the cake with the fork $)=$

Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$:probability of a sequence of words $P($ He ate the cake with the fork $)=$

Simple Solution: The Maximum Likelihood Estimate

$P($ He ate the cake with the fork $)=$

$P($ fork | He ate the cake with the $)=$
count(He ate the cake with the fork) count(He ate the cake with the *)

Simple Solution: The Maximum Likelihood Estimate

Problem: even the Web isn't large enough to enable good estimates of most phrases.
$P($ He ate the cake with the fork $)=$

$P($ fork | He ate the cake with the $)=$
count(He ate the cake with the fork) count(He ate the cake with the *)

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)
$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
\begin{aligned}
& P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B) \\
& P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)
\end{aligned}
$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule:
$P\left(X_{1}, X_{2}, \ldots, X n\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X 1, X_{2}\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$
$P(X 1, X 2, \ldots, X n)=P\left(X_{1}\right) P\left(X_{2} \mid X 1\right) P\left(X_{3} \mid X 1, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$

$$
P(X 1, X 2, \ldots, X n)=P(X 1) P(X 2 \mid X 1) P(X 3 \mid X 1, \stackrel{i=1}{X} 2) \ldots P(X n \mid X 1, \ldots, X n-1)
$$

Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

$P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)
$$

$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$

$$
P(X 1, X 2, \ldots, X n)=P(X 1) P(X 2 \mid X 1) P\left(X_{3} \mid X 1, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)
$$

Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

$P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

Unigram Model: $\mathbf{k = 0 ;} \quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)$
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$
$P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Markov Assumption: $\quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)$ $P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

Bigram Model: k=1;
 $$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}\right)
$$

Example generated sentence:
outside, new, car, parking, lot, of, the, agreement, reached

$$
\begin{aligned}
& P(X 1=\text { "outside", X2="new", X3 = "car", ,...) } \\
& \quad \approx P(X 1=\text { "outside" }) * P(X 2=" \text { "new"|X1 }=\text { "outside }) * P(X 3=" c a r " \mid X 2=" n e w ") ~ * . . .
\end{aligned}
$$

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Food corpus from Jurafsky (2018). Samples:

Language Mo

can you tell me about any good cantonese restaurants close by
Building a model mid priced thai food is what i'm looking for
a sequence of natural language
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i'm looking for a good place to eat breakfast
when is caffe venezia open during the day

Training Corpus

training

(fit, learn)

Istword secoud word Bigram Counts								
\downarrow	1	want	to	eat	chinese	food	lunch	spend
1	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Example from (Jurafsky, 2017)

Training Corpus

first word \mid second word
 Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend									
i	5	827	0	9	0	0	0	2									
want	2	0	608	1	6	6	5	1									
to	2	0	4	686	2	0	6	211									
eat	0	0	2	0	16	2	42	0									
chinese	1	0	0	0	0	82	1	0									
food	15	0	15	0	1	4	0	0									
lunch	2	0	0	0	0	1	0	0									
spend	1	0	1	0	0	0	0	0									
										i	want	to	eat	chinese	food	lunch	spend
	2533	927	2417	746	158	1093	341	278									

Training Corpus
(fit, learn)

\downarrow	i	want	to	eat	chinese	food	lunch	spend
1	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
	i	want	to	eat	chinese	food	lunch	spend
	2533	927	2417	746	158	1093	341	278

Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$

$P(X i \mid X i-1)$

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$

second word (Xi) $\quad \mathbf{P (X i} \mid \boldsymbol{X i} \mathbf{- 1})$
 second word (Xi) $\quad \boldsymbol{P}(\boldsymbol{X i} \mid \boldsymbol{X i} \mathbf{- 1})$
 first word(Xi-1)

Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$

Language Modeling

Building a model (or system / API) that can answer the following:

T Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(X i-1)$

Language Modeling

Building a model (or system / API) that can answer the following:
a sequence of
natural language

How common is this sequence?

What is the next word in the conionnos?
Trigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1} P\left(X_{i} \mid X_{i-2}, X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1, X i-2)=\operatorname{count}(X i-2 X i-1 X i) / \operatorname{count}(X i-2 X i-1)$
${ }_{\mathrm{T}}$ Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Language Modeling

Building a model (or system / API) that can answer the following:

Evaluation

Evaluation

Apply Chain Rule: $\begin{aligned} \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}} & P P(W)=P(w 1 w 2 w 3 \ldots w N)^{1 / N} \\ & =\sqrt[N]{\frac{1}{P(w 1 w 2 w 3 \ldots w N)}}\end{aligned}$

Evaluation

$\begin{aligned} & \text { Apply Chain Rule: } \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}} \\ & \text { Thus, } \\ & \text { PP for Bigrams: } \quad \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}\end{aligned}=\sqrt[N]{\frac{1}{P(w 1 w 2 w 3 \ldots w N)}}$

Evaluation

Reasoning:

1) Inverse of probability
(i.e. minimize perplexity = maximize likelihood)
2) (weighted) average branching factor

$\begin{array}{lll}\text { Apply Chain Rule: } & \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}} & P P(W)=P(w 1 w 2 w 3 \ldots w N)^{1 / N} \\ \text { Thus, } \\ \text { PP for Bigrams: } & \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}} & =\sqrt[N]{\frac{1}{P(w 1 w 2 w 3 \ldots w N)}}\end{array}$

Practical Considerations:

- Use log probability to keep numbers reasonable and save computation. (uses addition rather than multiplication)
- Out-of-vocabulary (OOV)

Choose minimum frequency and mark as <OOV>

- Sentence start and end: $\langle s\rangle$ this is a sentence $</ s\rangle$

Advantage: models word probability at beginning or end.

Zeros and Smoothing

$\text { first } \operatorname{word}(X i-1) \backslash$				$P(X i \mid X i-1)$				
	i	want	to	eat	chinese	food	lunch	spend
1	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Zeros and Smoothing

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Laplace ("Add one") smoothing: add 1 to all counts

Zeros and Smoothing

first word I second word

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace ("Add one") smoothing: add 1 to all counts

Unsmoothed probs

first word(Xi-1) ${ }^{\text {second word (Xi) }} \boldsymbol{P (X i | X i - 1)}$

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Smoothed

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

first word(Xi-1) $\left.\right|^{\text {second word (Xi) }} \quad \boldsymbol{P}(\boldsymbol{X} \mathbf{i} \mid \boldsymbol{X i} \mathbf{i} \mathbf{1})$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Why Smoothing? Generalizes

Original

With Smoothing
(Example from Jurafsky / Originally Dan Klein)

Why Smoothing? Generalizes

Add-one is blunt: can lead to very large changes.

More Advanced:
Good-Turing Smoothing
Kneser-Nay Smoothing
These are outside scope for now.
We will eventually cover, even stronger, deep learning based models.

Why Smpat - -2
 What about Logistic Regression? $\mathrm{Y}=$ next word $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{Xn} \mid \mathrm{Xn}-1, \mathrm{Xn}-2, \mathrm{Xn}-3, \ldots)$
 Not a terrible option, but Xn-1 through Xn-k would be modeled as independent dimensions. Let's revisit later. Could use:
 P(Xn | Xn-1, [Xn-1 Xn-2], [Xn-1 Xn-2 Xn-3], ...)

Example how to produce language generator

1. Count unigrams, bigrams, and trigrams
2. Train probabilities for unigram, bigram, and trigram models (over training)
a. with smoothing
b. without smoothing
3. Generate language: Given previous word or previous 2 words, take a random draw from what words are most likely to be next.

Trigram model when good evidence (high counts)
Backing off to bigram or even unigram

Limitation: Long distance dependencies

The horse which was raced past the barn tripped .

Language Modeling Summary

- Two versions of assigning probability to sequence of words
- Applications
- The Chain Rule, The Markov Assumption: $\quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)$
- Training a unigram, bigram, trigram model based on counts
- Evaluation: Perplexity
- Zeros, Low Counts, and Generalizability
- Add-one smoothing

